Monthly Archives: July 2022

关于给黑洞拍照背后的故事

  黑洞——人类当前认知中最神秘的宇宙天体。100多年前爱因斯坦的广义相对论就预测到它的存在,但直到2019年4月人类才获得了第一张黑洞照片。能够给黑洞拍照无疑是解锁了人类科技树上的新技能,如果你也和我一样好奇的话,本文就和大家分享一些给黑洞拍照背后的故事。 1. 当我们给黑洞拍照时,我们在拍什么?   黑洞本身并不发光,也不会向外发出任何电磁辐射(除了还未被证实的霍金辐射),即使以宇宙中最快的光速运动也无法逃脱它的引力束缚。那对着它拍照岂不是什么也看不到?黑洞照片上那朦胧的橘色轮廓又是什么?要想知道给黑洞拍照的真相,我们先回顾一下黑洞的结构。   根据上面这张欧洲南方天文台(The European Southern Observatory,简称ESO)给出的假想图可以看出,一个典型黑洞是由奇点,事件视界,光子球,相对论性喷流,最内侧稳定轨道,吸积盘等组成。简单来说,黑洞有两个最基本的部分。第一个是奇点(singularity),即黑洞的中心点,也是落入黑洞物质命运的终点。这是一个体积无限小,密度无限大的引力异常点,此处的空间和时间已经被扭曲到所有的已知物理定律,包括预言它存在的广义相对论都不再适用;第二个是事件视界(event horizon),可以把它理解成一个无形的边界,在这个边界上逃逸速度正好等于宇宙中最快的光速,所以一旦进入这个边界内部,就再也无法逃出黑洞。在万有引力常数不变的情况下,逃逸速度只和物体的质量还有半径(体积)有关。地球的逃逸速度即第二宇宙速度是11.2千米/秒。如果把地球压缩到半径9毫米以下的体积,那么它的逃逸速度就会大于光速,也就变成了一个黑洞。这个临界值可以简单理解为是任何物体自身的事件视界到奇点的距离即史瓦西半径,如果把一个物体压缩成球体的话,只要半径小于史瓦西半径,它就可以变成一个黑洞。太阳的史瓦西半径是3千米,一个人的史瓦西半径大概是10-26米(比电子还要小一亿倍)。   黑洞在“吞噬”其周围物质时会形成高速旋转的吸积盘(accretion disc)。它是黑洞周围的气体或尘埃受到黑洞引力影响跟着一起旋转,当其角动量足够大即旋转足够快时,在一些特定的位置,产生的离心力能够和黑洞的引力相抗衡,从而形成的一种盘状结构。吸积盘内的气体因为高速旋转会产生超高温,从而向外辐射大量能量,也就是人类观察到黑洞发出的电磁波的主要来源。当黑洞吸积物质过快时,吸积盘的磁场会沿着黑洞自转方向扭曲,一些粒子就会以极高的动量(甚至接近光速)喷射出去,形成相对论性喷流(relativistic jets)。   因此,给黑洞拍照主要是在不可见光波段,观测黑洞的吸积盘及喷流产生的电磁辐射。 2. 人类迄今为止拍摄到唯二的黑洞照片   截至目前,人类只拍到过两张黑洞照片,都是由事件视界望远镜(Event Horizon Telescope,简称EHT)组织拍摄、整理、发布。EHT成立于2009年,专门以观测拍摄黑洞为使命,目前由超过20个国家和地区,60个科研机构的300多名科学家组成。   这两张照片分别是2019年4月10日发布的Messier 87(室女A)星系中心超大质量黑洞(简称M87*)照片,以及2022年5月12日发布的我们银河系中心人马座A(Sagittarius A)方向的超大质量黑洞(简称Sgr A*或银心黑洞)照片。这里的星号借鉴了原子物理中激发态(excited state)的概念,表示该天体处于非常活跃的状态。   两图中心黑色阴影部分并不是事件视界的范围,而是大约黑洞史瓦西半径的2.6倍大小,橘色亮斑代表吸积盘上的气体向着接近我们的方向旋转,暗部则反之(多普勒效应)。至于为什么银心黑洞上有三个亮斑,目前还未能确认其产生原因。   下面是这两个黑洞的一些基本情况:   M87* Sgr A* 银心黑洞 质量(与太阳相比) 65 亿 倍 410 万 倍 与地球的距离 5300 万 光年 26600 光年   再看看两个黑洞的大小。下图中右侧中心的小白点是太阳,银心黑洞外围(吸积盘)的面积,与水星轨道面积相当;左侧是M87*,图中白色小圆圈是冥王星的轨道面积,白色小点是1977年发射的旅行者1号,目前距离地球最远的人造探测器的位置。   如果上面的表格中数字太大或黑洞体积还是不直观的话,我们把太阳放大看看可能会容易理解一些。   实际上这两张黑洞照片的“拍摄”时间都是在2017年4月,持续近10天。第一张M87*照片在两年后公布,第二张银心黑洞的照片又等了3年才公布。 3. 给黑洞拍照很难吗?   现在你可能会问,这两个黑洞那么大,怎么还拍得这么不清楚?和《星际穿越》里黑洞的样子相比怎么这么难看?给它们拍照片很难吗?答案是:难,非常难。可谓是拍照10天,修图5年(银心黑洞)。 挑战一:角分辨率   从距离上来说,M87*黑洞虽然距地球比银心黑洞远2000倍,但却比后者要大1000倍。所以从地球望去,视觉效果上两者是差不多大小的。加之一个是我们已知的最大黑洞之一,一个是我们自己星系中心的黑洞,因此EHT选择它俩作为观测目标。它们在天空占据多大的位置(角分辨率)呢?答案是52微角秒(1微角秒=1″ / 1000 / 1000 ),相当从地球观察月球表面一个甜甜圈????。经计算,望远镜的尺寸需要和地球一样大,才可以达到如此的拍摄分辨率。 挑战二:超大数据量   对黑洞的观测每天每个观测点产生的数据量可达350TB,科学家们需要足够的耐心和时间来处理这些数据。 银心黑洞附加题一:尘埃带遮挡   由于太阳系位于银河系的盘面上,向银河系中心望去时,存在很多遮挡物,这是由星际尘埃和气体组成的尘埃带,使得银心处的可见光,紫外线和部分X射线都无法到达地球。尘埃带一般常见于漩涡星系或棒旋星系(比如银河系)。而M87星系是椭圆星系,完全不受银河系尘埃带遮挡,加上观测路线上也比较通透,所以后期数据处理要容易很多。 银心黑洞附加题二:延时摄影   虽然两个黑洞的吸积盘旋转都非常快速(甚至接近光速),但因为M87*体积足够大,因此吸积盘旋转一圈需要数天时间,而银心黑洞吸积盘旋转一圈的时间只需要数分钟。这就导致给银心黑洞拍照类似延时摄影,或在光线不好的地方给一条欢乐的小狗拍照,很难得到一张清楚的照片。 4. 如何给黑洞拍照?   好在人类拥有足够的好奇心和智慧的科学家们。在EHT … Continue reading 关于给黑洞拍照背后的故事 »

利用Real-ESRGAN修复制作高清版国产经典动画《大闹天宫》

  之前和儿子看了几次西游记的舞台剧,为了让他对故事的来龙去脉有更完整的印象,答应了和他一起看孙悟空动画片。当然不是白龙马,蹄朝西,而是更久远的 1961 年首映的国产动画《大闹天宫》,至少那时的动画是真的为了做好动画,没有商业目的,看完即走不卖周边可以放心食用。找到了 [大闹天宫(影迷修复版)].The.Monkey.King.(Fan.Restored.Edition).1965.DVDRip.x264.AC3-CMCT.mkv (1.46GB) ,虽然已经是修复版,但画质仍然是比较感人。于是自己也有了这次动画的修复经历。   修复使用的是 Real-ESRGAN 这个库,它基于 PyTorch 实现,用于对图像进行超分辨率成像 (super-resolution) 。根据作者 xinntao 的介绍, Real-ESRGAN 的目标是开发出实用的图像/视频修复算法。我们在 ESRGAN 的基础上使用纯合成的数据来进行训练,以使其能被应用于实际的图片修复的场景(顾名思义:Real-ESRGAN)。   ESRGAN 的作者也是同一人,属于自我进化了。另外作者还提供了论文和详细的 PPT 介绍。这次我用到的是专门针对动漫视频制作了模型的 RealESRGAN AnimeVideo-v3 ,介绍页面中作者已经提供了编译好的各平台可执行文件以及使用步骤,此处就不重复粘贴具体命令了,只对大致过程和遇到的问题说明一下。   从超分辨率成像的描述可以看出,Real-ESRGAN 的核心是对图像进行“修复”。那么对视频文件如何处理呢?思路和把大象关进冰箱是一样的,总共分三步: 利用 FFmpeg 把视频中的每一帧图像都抽取出来,类似把视频解压缩成图像。开头提到的《大闹天宫》视频变成了 170,977 张 720*512 的图片文件,总大小 14.33GB。 使用编译好的可执行文件 realesrgan-ncnn-vulkan 对每帧图片进行增强。我选择的是默认 2 倍分辨率,于是得到了同样数量的 1440*1024 的图片文件,总大小 171.79GB。 利用 FFmpeg 把增强后的图像文件合并成视频文件,类似把图片打包成视频。最后修复好的两倍分辨率高清版视频是 2.42GB,libx264 编码格式。这里要注意两点: 把图像打包成视频,要使用原始视频文件的fps,即每秒的帧数,也是利用FFmpeg的到。开头提到的《大闹天宫》是25 fps,由此也能推断出视频长度是 170977/25/60≈114分钟。 常见的 mp4 格式只支持 hard subtitles (硬字幕,也等于不支持字幕),也就是把字幕直接合并到每帧图像上,播放时就不能开关或切换字幕了。所以此处我选用了 mkv 格式,一并把原来的简体和繁体中文两种字幕拷贝到了新的视频中,播放时可以按需切换或关闭。具体命令是 ffmpeg -i out_frames/frame%08d.jpg -i dntg.mkv … Continue reading 利用Real-ESRGAN修复制作高清版国产经典动画《大闹天宫》 »